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Axial Green function Methods (AGM) use so-called axial lines which are parallel to axes. These novel approaches can have
computational advantages particularly in complicated domains. The attention here is laid on the computations of the electric potential
problems with singularities caused by domain geometry and boundary values. In the vicinity of the singularities, we select singular
subdomains on which the axial lines are independently refined. Based on these refinements of axial lines in AGM, we can accurately
calculate the singular solutions.
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I. INTRODUCTION

BY the axial Green function, we mean that it is 1D Green
function of an ordinary differential operator defined on a

line parallel to axis in 2D/3D domain. In general, the finite
difference method(FDM) uses this kind of lines, called the
grids, but the admissible grids in FDM are very restrictive
unless the domain is simple or the grids are gradually chang-
ing in space. Axial Green function methods(AGM) we have
developed in [1], [2], [3] work well in arbitrary domains
without deterioration of accuracy, and moreover they do even
in randomly spacing axial lines. Traditionally, the use of Green
function takes place in the boundary element(BEM) method,
which can reduce the dimension of the problem by discretizing
the boundary of the domain. However, this is possible only
when finding the fundamental solution or Green function of
2D/3D differential operator. However, if the material coefficient
is a function, then the BEM suffers from finding this multi-
dimensional Green function in the domain. The advantages
of AGMs are obvious at least in two points: (a) arbitrarily
distributed axial lines are available, which is inconvenient in
FDMs, and (b) it is much easier to find the 1D Green function
compared to finding 2D/3D Green function. However, when
singularities happen in the solution triggered by the geometric
factor and/or the boundary values, the accumulation or re-
finement of axial lines near the singularity causes redundant
axial lines in other places of the domain, which can often
make a burden for computations using AGMs. According to
these facts, the refinement of axial lines in the vicinity of
singularity is essential, which is the key difference from the
previous works. The selected region near the singularity is
called the subdomain of singularity, on which axial lines can be
independently distributed. The success of this approach is fully
attributed to the representation formula of the solution on axial
lines by the axial Green functions. Furthermore, it should be
mentioned that AGMs have analytic formula for the derivative
calculation of the solution. It often becomes troublesome in
FEMs.

II. AXIAL GREEN FUNCTION METHOD

We consider the electric field problem in 2D domain Ω:

−∇ · (ε∇u) = f, in Ω, (1)

u = u∂Ω, on ∂Ω, (2)

where ε(x, y) is the permittivity of the matter. Of interest is
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Fig. 1. Local axial lines in a domain Ω: x−axial line(X ȳ) and y−axial
line(Y x̄) at (x̄, ȳ).

that this 2D problem can be reformulated to a couple of 1D
problems. First of all, we decompose the 2D partial differential
differential operator −∇ · (ε∇) into two parts by introducing
a new variable φ(x, y) as follows:

−(ε ux)x = φ, in Ω, (3)
−(ε uy)y = f − φ, in Ω. (4)

Corresponding to the differential equations in (3) and (4),
we find 1D Green functions, G(x, ξ;X ȳ) and G(y, η;Y x̄),
respectively, to represent the solution u(x, y) on x−axial line
X ȳ and y−axial line Y x̄ associated with a given cross point
(x̄, ȳ) ∈ Ω as shown in Fig. 1: for x− < ξ < x+ and
y− < η < y+,

u(ξ, ȳ) =

∫
Xȳ

G(x, ξ;X ȳ)φ(x, ȳ) dx

+ u(x−, ȳ)BX
− (ξ) + u(x+, ȳ)BX

+ (ξ), (5)

u(x̄, η) =

∫
Y x̄

G(y, η;Y x̄)(f − φ)(x̄, y) dy

+ u(x̄, y−)BY
− (η) + u(x̄, y+)BY

+ (η). (6)



These representations of the solution u on axial lines can be
written as a unified 1D form: for t− < τ < t+,

u(τ) =

∫ t+

t−

G(t, τ)g(t) dt+u(t−)B−(τ)+u(t+)B+(τ), (7)

where G(t, τ) is the corresponding Green function in [3]
and B±(τ) is the function related to the boundary values
u(t±). Instead of directly attacking the 2D problem in (1) with
boundary condition (2), we pay attention to the equations of
integral form in (5) and (6).

III. REFINEMENT OF AXIAL LINES

For more accurate computation of the electric field in a given
domain, we need independent refinements of axial lines on
the selected subdomains on which singular behaviors happen.
Assume that Ω is the given domain as illustrated in Fig. 2
and the boundary values are assigned on its boundary, where
Neumann boundary conditions are available in AGM [4]. There
happen three singularities of the solution u which comes from
(A) the geometric singularity at (0, 0), (B) the different types
of boundary condition at (−1, 0), and (C) the discontinuous
boundary values at (1, 1). As seen in Fig. 2, we select three
subdomains for the refinement of axial lines in the vicinity
of these singular points. The axial lines on subdomains can be
independently constructed no matter how the background axial
lines are distributed. In our case, the accumulated axial lines
near the singularity are taken for the purpose of refinement
on all subdomains in the same pattern as in Fig. 2. The
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Fig. 2. Configuration of the problem domain Ω: [Left] three subdomains
of singularities with refined axial lines, the background axial lines, and the
boundary conditions. [Right] the interface point xΓ (red dot) between a
subdomain Ω1 and the background Ω2, and virtual axial lines of xΓ (dotted
line).

solution representations in (5) and (6) enable us to glue the
AGM solutions on the subdomains to the background solution
across the interface point xΓ by considering virtual axial lines
(dotted line) in the right panel of Fig. 2. Indeed, if (x̄, ȳ) is
the cross point (black dot), then the solid lines are taken as
axial lines, X ȳ and Y x̄, in (5) and (6), as in usual AGMs,
and then we replace ξ = x̄ and η = ȳ. At the interface point
xΓ = (xΓ, yΓ) in Fig. 2, we choose the dotted lines passing
through xΓ as virtual axial lines, XyΓ and Y xΓ , and follow
the same process as with the prior. Discretizing these integral
equations for the unknown φ and u, we can solve the resultant
system of equations using the generalized minimal residual
method(GMRES). In Fig. 3 and 4, we calculate the electric
potentials u and the electric field strengths |∇u| in cases where
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Fig. 3. Constant permittivity(ε(x, y) = 1): [Left] AGM solution u of 70, 163
cross points(black line) comparing to FEM solutions of 70, 163 nodes (dotted
line) and 170, 208 nodes (blue line). [Right] AGM gradient field strength
|∇u|.

ε(x, y) = 1 and ε(x, y) = 5.5 + 3 tan−1 (−50(r − 0.2)) in
Ω, respectively. In the left panels of Fig. 3 and 4, we show
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Fig. 4. Variable permittivity(ε(x, y) = 5.5 + 3 tan−1 (−50(r − 0.2))): all
the same setting as in Fig. 3.

two FEM solutions of 170, 208 nodes and 70, 163 nodes and
the AGM solution of 70, 163 cross points, and the zoomed-in
views on three subdomains of (A), (B), and (C) for comparison.
The FEM meshes are generated using the AGM cross points
in the left panel of Fig. 2. The strengths of AGM electric
field ∇u are depicted in the right panels of Fig. 3 and 4.
A particular emphasis in AGM is the derivative calculation,
which is basically done from direct differentiation of (7).

IV. CONCLUSIONS

We present a refinement approach for the electric field
computation using AGM, which is inevitable to calculate the
accurate solution near singularity. Any type of subdomain
can be taken for the singularity and arbitrary distribution of
axial lines is available on that subdomain. The derivative
computation using the solution representation formula on axial
lines is superior to other methods.
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